The active-zone protein Munc13 controls the use-dependence of presynaptic voltage-gated calcium channels

Nathaniel Calloway, Géraldine Gouzer, Mingyu Xue & Timothy A. Ryan*
Affiliations:
Department of Biochemistry, Weill Cornell Medical College, New York, New York 10023, USA
*Corresponding author. Email: taryan@med.cornell.edu

Presynaptic calcium channel function is critical for converting electrical information into chemical communication but the molecules in the active zone that sculpt this function are poorly understood. We show that Munc13, an active-zone protein essential for exocytosis, also controls presynaptic voltage-gated calcium channel function dictating their behavior during various forms of activity. We demonstrate that in vitro Munc13 interacts with voltage-gated calcium channels via a pair of basic residues in Munc13’s C2B domain. We show that elimination of this interaction by either removal of Munc13 or replacement of Munc13 with a Munc13 C2B mutant alters synaptic VGCC’s response to and recovery from high-frequency action potential bursts and alters calcium influx from single action potential stimuli. These studies illustrate a novel form of synaptic modulation and show that Munc13 is poised to profoundly impact information transfer at nerve terminals by controlling both vesicle priming and the trigger for exocytosis.

Introduction

The active-zone protein Munc13 plays a central and essential role in all known forms of chemical synaptic transmission (Augustin et al., 1999; Varoqueaux et al., 2002). Munc13 is critical for correct assembly of exocytic proteins in preparation for neurotransmitter release that it executes at least in part through interactions with plasma membrane SNARE protein syntaxin (Ma et al., 2012). This large multi-domain protein additionally binds several other key active-zone proteins, including RIM, ELKS and
bassoon as well as calmodulin. Munc13 additionally contains three C2 domains that can mediate interactions with lipid membranes. The importance of Munc13 in synapse function was established in genetic ablation experiments in mice, flies and worms but the roles of the numerous putative interactions of Munc13 with potential binding partners remains an area of intense interest. Synaptic transmission relies on two distinct molecular pathways for neurotransmitter release: the preparation of neurotransmitter-filled synaptic vesicles to a docked state at the active-zone and action potential-driven opening of voltage gated calcium channels (VGCCs) causing rapid elevation of intracellular calcium in the vicinity of these vesicles. Although a number of active-zone proteins (Rim, Bassoon, Elks) have been found to play a role in controlling the location and/or abundance of VGCCs (Davydova et al., 2014; Han et al., 2011; Kittel et al., 2006), these potential interactions are not thought to impact VGCC properties themselves. Additionally different variants of Munc13 have been shown to differentially impact exocytosis depending on the distance between release sites and VGCCs (Hu et al. 2013; Zhou et al. 2013). Here provide compelling evidence that Munc13 interacts with VGCCs in a way that controls calcium channel use-dependence on millisecond to second time scales at nerve terminals. We pinpointed a critical interaction site to 2 basic residues within the C2B domain of Munc13 on a face that is orthogonal to the potential membrane-interacting loops of this domain. Loss of Munc13 at hippocampal nerve terminals profoundly alters the response of VGCCs during brief AP bursts of very high-frequency firing. Although re-expression of Munc13 harboring point mutations that prevent interaction with VGCCs in Munc13-KD synapses restores exocytosis, it does not rescue the alterations in VGCC function. As a result, synapses expressing this mutant Munc13 have profound changes in ultra-fast plasticity of the exocytic response as well. Thus in addition to its central importance in controlling SNARE assembly Munc13 also tunes temporal aspects of VGCCs and in turn influences ultra-fast plasticity at nerve terminals.
Results

Munc13 interacts with voltage gated calcium channels in vitro

Munc13 isoforms contain numerous protein-protein and protein-ligand interaction domains. These include a Ca\(^{2+}\) and lipid interacting C2B domain homologous to the C2B domains of synaptotagmin-1 and RIM1, which are known to interact with the synaptic protein interaction (synprint) region on Ca\(_{\text{v}2.2}\) (Chapman et al., 1998; Coppola et al., 2001; Sheng et al., 1997) (Figure 1A). Since Munc13 is known to be targeted to regions of the presynaptic membrane rich in VGCCs (Weimer et al., 2006) we wondered if Munc13 might also interact with VGCCs via this conserved C2B domain. We carried out in vitro co-precipitation assays using glutathione S-transferase (GST) Munc13-1 C2B domain fusions and epitope tagged derivative of the synprint region of Ca\(_{\text{v}2.2}\). We showed that the C2B domain of Munc13, like that in synaptotagmin and RIM, also interacts with the synprint region of Ca\(_{\text{v}2.2}\) in a Ca\(^{2+}\) independent manner (Figure 1B). Munc13 isoforms carry a short polybasic sequence in their C2B domain similar to the synprint interaction motif on synaptotagmin that is orthogonal to the lipid-interaction face of the protein (Figure 1C). Mutating this polybasic sequence (Munc13-KR/AA) disrupted the in-vitro interaction between Munc13-1 and the synprint region of Ca\(_{\text{v}2.2}\) (Figure 1B) similar to what has been reported for both the synaptotagmin C2B-synprint and RIM C2B-synprint interactions. These findings indicate that the polybasic region in the C2B domains of these proteins is a shared motif that potentially mediates interaction with VGCCs in situ. Previous reports of C2B-synprint interactions have not included functional assays of the effect of the interaction on presynaptic Ca\(^{2+}\) influx. We therefore took advantage of the ability to monitor Ca\(^{2+}\) influx at active zones under conditions that perturb the potential Munc13-VGCC interaction.
Loss of Munc13 decreases action potential-driven presynaptic calcium influx

Although a number of studies have successfully used heterologous expression systems to examine how small modulatory proteins, such as calmodulin and βγ subunits of G proteins, control voltage-gated calcium currents at the plasma membrane this approach is more difficult with large proteins whose subcellular targeting is restricted to specialized compartments, as is the case for Munc13 targeted to active zones. To test for the possible significance of the Munc13-VGCC interaction we therefore examined the impact of removing Munc13 on action potential-driven calcium influx in nerve terminals. We recently showed that expression of an shRNA targeting the major cortical isoforms Munc13-1 and Munc13-2 (Munc13-KD) led to a 94% or greater depletion of this protein at nerve terminals that results in complete block of exocytosis (Rangaraju et al., 2014). As expected single AP responses probed using vG-pHluorin are eliminated in Munc13 KD neurons (Figure 2A). We previously developed a robust approach for examining AP-driven presynaptic Ca2+ influx using AM-ester loaded Fluo5F at presynaptic boutons (Hoppa et al., 2012b) identified using a fluorescent-protein-tagged presynaptic protein (VAMP2-mCherry). We found that Munc13-KD resulted in a 34% reduction in Ca2+ influx following a single action potential as compared to wild-type cells (Figure 2C,D). This effect was fully reversed by rescuing the knockdown with an shRNA-insensitive variant of Munc13-1 (see below). There are several mechanisms by which Munc13 could modify Ca2+ influx: loss of Munc13 could change the number of VGCCs on the presynaptic membrane; it could alter the presynaptic waveform, which controls the fraction of VGCCs that open and the temporal envelope of the driving force for Ca2+ entry, or it could alter the gating properties of VGCCs themselves. To investigate possible changes to the AP waveform we used the genetically-encoded voltage sensitive probe archaerhodopsin fused to green fluorescent protein (Arch-GFP) (Kralj et al., 2012) expressed either in wild-type (WT) or Munc13-KD neurons to visualize possible changes in the action potential at presynaptic terminals (Hoppa et al., 2014). We found that Munc13-KD did not significantly impact the height or full-width at half-maximum (FWHM) of
the AP compared to wild-type (Figure 2D, E). Based on these data, we concluded that the reduction in Ca^{2+} influx was not the result of changes to the AP waveform. Quantitative immunostaining using an anti-CaV2.1 antibody directed to an intracellular domain of this protein (Hoppa et al., 2012) showed that the total synaptic abundance of this Ca^{2+} channel isoform was not altered by Munc13-KD (Figure 2F,G). At present however we lack tools to probe the abundance of the other major VGCC present in these nerve terminals (CaV2.2). Immunostaining also does not unambiguously determine the number of VGCCs on the presynaptic plasma membrane versus an intracellular pool since the only available antibodies target intracellular domains of the channels. Thus the decrease in single AP presynaptic Ca^{2+}-influx in the absence of Munc13 could arise from changes in surface abundance of VGCCs or changes in gating properties. To look for possible changes in gating properties we examined how loss of Munc13 impacted functional plasticity of AP-driven presynaptic Ca^{2+} influx on time scales that would be too fast (ms to s) to involve membrane trafficking events to and from the cell surface.

Munc13-KD leads to prolonged inactivation of VGCCs after trains of action potentials

To investigate an underlying mechanism of Munc13’s control of Ca^{2+} influx in presynaptic boutons that would be separate from changes in VGCC surface abundance, we first examined how the absence of Munc13 might influence the ability of VGCCs to recover from bursts of activity. Changes in Ca^{2+} influx after the burst would be consistent with alteration in VGCC kinetics of inactivation and/or recovery from protracted stimuli. To examine this issue we compared single AP Ca^{2+} influx before and after a 0.5 s period of 100 Hz firing (Figure 3A). In wild-type synapses this level of activity did not impact single AP responses measured 0.5 s after the burst compared to before the burst. In contrast in the absence of Munc13, the single AP response 0.5 s after the burst was significantly lower (~30%) than that measured before the burst (Figure 3A,B, Table 1). There are two possible explanations for this reduction: 1) in the absence of Munc13 there is increased VGCC inactivation following the 100 Hz stimulus and 2) in the
absence of Munc13 VGCCs inactivate to the same extent as in WT but recover more slowly. At present we do not have the means to separate these possibilities experimentally.

Munc13-KD reduces a VGCC refractory phase during high frequency pairs of action potentials

As a second paradigm to study changes in VGCC gating properties we probed Ca\(^{2+}\) dynamics for paired stimuli on very fast time scales, at the upper limit of stimulation frequencies that could conceivably generate multiple APs (Staff et al., 2000). Since presynaptic Ca\(^{2+}\) clearance subsequent to AP stimulation occurs over a > 100 ms time scale, and as single AP signals are well below the saturation threshold for Fluo5F, the Ca\(^{2+}\) influx for an inter-stimulus interval (ISI) of 2 ms should reflect the sum of the Ca\(^{2+}\) influx from each stimulus. These experiments showed that in wild-type synapses the summed response for double AP stimulation was only slightly higher than that obtained with a single AP (Figure 4A) indicating a 90% reduction in Ca\(^{2+}\) influx on the second AP with a 2 ms ISI (Figure 4A,G, Table 1). These results are consistent with previous reports that demonstrated profound depression of excitatory postsynaptic current (EPSC) in response to stimulus pairs at these frequencies (Brody and Yue, 2000; Dobrunz et al., 1997; Stevens and Wang, 1995). Those studies independently proposed various hypotheses for the mechanism of this depression including exocytosis-driven inhibition, failure of AP propagation and inactivation of VGCCs. All 3 of these possible mechanisms would be potentially consistent with our observations of depression of Ca\(^{2+}\) influx for short ISIs. We reasoned that if exocytosis at the active zone leads to a brief refractory period in VGCC function then conditions that eliminate exocytosis should remove the depression in Ca\(^{2+}\) influx. We tested this idea in a manner that is independent of Munc13 by expressing the proteolytic light-chain of tetanus toxin (TeNT-LC) in hippocampal neurons and carried out measurements of AP-driven influx for single and AP pairs at 2 ms ISI. We previously showed that expression of TeNT-LC in these cells eliminates exocytosis (Rangaraju et al., 2014). Simply eliminating exocytosis however did not change the reactivation behavior of presynaptic VGCCs (Figure 4 B,G)
probed with 2 AP stimulation with a 2 ms ISI, which were indistinguishable from that observed in WT synapses. Thus the observed fast paired-pulse depression in presynaptic Ca2+ influx is not exocytosis-driven. In order to determine if the loss of Ca2+ influx could result from AP failure we used ARCH-GFP to examine the presynaptic AP waveform for single and AP pairs at 2 ms ISI (Figure 4C) measured at individual boutons. Our measurements have all been carried out at 37\textdegree while most of the earlier work examined synaptic depression at colder temperatures (~22-24\textdegree). Arch-GFP-based recordings of AP pairs showed that even at 30\textdegree there is virtually complete failure in AP propagation for the 2nd AP when delivered 2 ms after the first, consistent with the predictions of Broadie and Yue (Broadie & Yue, 2000) (Figure 4C). The ratio of the ARCH signal in response to the 2nd stimulus normalized to that of the response to the first stimulus is close to zero, once corrected for the residual signal resulting from the first AP (Figure 4D). In contrast at 37\textdegree similar measurements revealed that the amplitude of the 2nd AP is similar to the 1st at these short ISIs in both wild-type and Munc13-KD (Figure 4C, D) in all cells examined (Figure 4D) (wild-type AP\textsubscript{2}/AP\textsubscript{1} = 1.04 ±0.05 sem, n=7, Munc13-KD AP\textsubscript{2}/AP\textsubscript{1}=1.04 ±0.16 sem, n=7). The width of the 2nd AP was also similar for both wild type (FWHM AP\textsubscript{2}= 1.2 ±0.24 ms sem. n=7) and Munc13-KD (FWHM AP\textsubscript{2} = 1.36 ± 0.50 ms sem, n=7). Therefore under these conditions both APs successfully propagate to presynaptic boutons and should be equally capable of fully driving VGCCs to the open state in both wild-type and Munc13 KD boutons. Thus at physiological temperature, AP failure is not the mechanism of fast synaptic depression of Ca2+ influx (or by extension the mechanisms of the depression of exocytosis).

Remarkably we found that VGCCs behave drastically differently for these fast-time scale paired-pulse stimuli in the absence of Munc13. Munc13-KD nerve terminals displayed much greater Ca2+ influx for the second AP relative to the first compared to wild-type. Following Munc13-KD the 2nd AP response was 68\% of the single AP response (Figure 4D, Table 1) in stark contrast to cells expressing Munc13 where the 2nd AP response was a mere 10\% of the single AP response (Figure4 A,E, Table 1). These data imply
that Munc13 strongly impacts the millisecond time scale dynamics of VGCCs and in particular alters the likelihood of either persisting in or entering a refractory state following an AP. Based on this logic, we predicted that due to the low concentration of Munc13 outside of presynaptic boutons, Ca\(^{2+}\) influx in other regions of the cell would resemble that in Munc13-KD boutons. Indeed, Ca\(^{2+}\) influx recorded at the soma in response to 2 ms spaced pairs of stimuli in wild-type cells had almost identical properties to presynaptic responses in Munc13-KD cells (Figure 4 F,G). Our data are thus consistent with the idea that Munc13 actively modulates VGCC properties in the active zone.

We further examined the persistence of this refractory state of VGCCs by examining paired-pulse Ca\(^{2+}\) influx over a series of ISIs in both wild-type and Munc13-KD neurons (Figure 4H). Wild-type synapses recovered from reactivation failure by ~ 60% within 5 ms but reached full recovery only for ISIs > 40 ms. In contrast, in synapses that lack Munc13, reactivation was much more efficient over the entire 2-40 ms regime (>60%) and was similar to wild-type values for times > 40 ms.

Because knockdown of Munc13-1/2 results in a reduction in single AP Ca\(^{2+}\) influx in addition to a reduction in failure to reactivate, a plausible explanation is that fast reactivation is a Ca\(^{2+}\)-dependent process modulated by Ca\(^{2+}\) influx from the first AP. For example, VGCCs are known to undergo Ca\(^{2+}\)-dependent inactivation (Chaudhuri et al., 2007; Lee et al., 2003). To investigate if the increased response of the second AP during 2 ms ISI stimulation in Munc13-KD synapses was related to the reduced influx on the first AP, we examined how the failure of VGCCs to reactivate for ISI of 2 ms depended on the magnitude of Ca\(^{2+}\) influx during the first AP by varying external Ca\(^{2+}\). We measured Ca\(^{2+}\) influx in wild-type synapses for single and pairs of AP stimuli at 2 ms ISI using lower external Ca\(^{2+}\) (1.2 mM and 0.6 mM, Figure 5), which reduced Ca\(^{2+}\) influx to levels seen in Munc13-KD neurons (Figure 5B, 39% reduction of single AP for 0.6 mM Ca\(^{2+}\)), and compared the results to those obtained in 2 mM external Ca\(^{2+}\). Our data showed that the failure of VGCC reactivation for short ISI was insensitive to external Ca\(^{2+}\)
manipulations (Figure 5A) and not dependent on the magnitude of the influx of the first AP (Figure 5B). Similarly, the absence of depression in Ca2+ influx for the second AP stimulus observed in Munc13-KD synapses was independent of external Ca2+ concentration and the amount of influx during the first AP (Figure 5B,C). Thus the refractory period we observe for reactivation of VGCCs following an initial AP is not impacted by changing the magnitude of Ca2+ influx in both wild-type and Munc13-KD neurons. The combination of a slower recovery from inactivation in Munc13-KD neurons, a reduced single AP Ca2+ influx, and increased reactivation on very fast time scales is consistent with a model whereby the interaction of Munc13 with VGCCs changes the energy barriers between different VGCC states, altering the rates of transitions between these states.

Mutation of the Munc13 synprint binding motif prevents its effects on presynaptic VGCCs

To test the significance of the observed *in-vitro* interaction between Munc13 and the synprint region of Ca\textsubscript{v}2.2 we expressed shRNA-resistant derivatives of both Munc13-1 and the mutant lacking synprint binding capacity, Munc13-KR/AA, in a Munc13-KD nerve terminals. Re-expression of Munc13-1 in Munc13 KD neurons resulted in complete restoration of Ca2+ influx from single APs (Figure 6A,D). This observation suggests that the effects seen with Munc13-KD are specific to the depletion of Munc13 expression levels as opposed to off target effects. Conversely, in Munc13-KD cells expressing Munc13-KR/AA, Ca2+ influx from single APs remained similar to Munc13-KD (Figure 6A,D) although exocytosis was largely restored (see below). This result suggests that, indeed, the synprint binding motif in the C2B domain of Munc13 is specifically responsible for the functional effects of Munc13-KD on VGCCs. Similarly, expression of wild-type Munc13-1 in the KD restored VGCC refractory period observed during 2 ms ISI paired pulses and eliminated the residual inactivation following 50 AP trains whereas expression of Munc13-KR/AA did not (Figure 6B,C,E,F). Thus for these functional assays, rescue with Munc13-1 restored Ca2+ dynamics to that of wild-type cells, whereas Munc13-KR/AA did not and was
indistinguishable from Munc13-KD. These data support the idea that the interaction we identified in vitro constitutes the primary molecular determinant of the effects on VGCCs seen in Munc13-KD neurons.

Munc13-mediated high frequency depression of VGCC function impacts synaptic vesicle exocytosis

Because we observed a Munc13 mediated reduction in VGCC reactivation with 2 ms ISI paired pulses, we tested the physiological consequences of such stimuli at the level of presynaptic exocytosis. Bursts of stimulation have been identified at this frequency throughout the nervous system (Gray and McCormick, 1996; Kandel and Spencer, 1961; Llinas and Jahnsen, 1982), and the fidelity of synaptic transmission in these bursts is strongly influenced by the ISI time scale (Harris et al., 2001; Roberts et al., 2008). Previous studies have shown that when hippocampal synapses are challenged by pairs of APs separated by only a few milliseconds, the second response is generally profoundly depressed with respect to the first (Brody and Yue, 2000; Dobrunz et al., 1997; Stevens and Wang, 1995). We measured synaptic vesicle exocytosis using vGlut1-pHluorin as previously described (Ariel et al., 2013; Ariel and Ryan, 2010; Hoppa et al., 2012b; Voglmaier et al., 2006) and compared single AP responses with 2ms ISI paired pulses in wild-type cells using the optical reporter. Since endocytosis and re-acidification of vGlut1-pHluorin occurs on a relatively slow time scale (s), the signals from 2 AP with only 2 ms ISI should summate. We found that in wild-type cells stimulation with two APs at 2 ms ISI resulted in a small (20%) increase in exocytosis over a single AP (Figure 7A,E, Table 1), corresponding to 80% inhibition of exocytosis from the second AP. This depression in the 2nd AP response was insensitive to decreasing magnitude of influx during the 1st AP (Figure 7B,E), consistent with our observations that reductions in extracellular Ca\(^{2+}\) do not affect levels of channel reactivation (Figure 5). The complete lack of synaptic vesicle exocytosis precludes measuring fast depression in Munc13-KD cells. However reintroduction of shRNA-resistant Munc13-1 into the KD background gave very similar fast depression to wild-type cells.
(Figure 7C,E, Table 1). In contrast expression of Munc13-KR/AA in the Munc13-KD rescued exocytosis from a single AP to levels expected based on Ca2+ influx (see below) but failed to restore the profound depression of exocytosis for 2 ms ISI indicating that this mutant effectively decoupled the vesicle priming activity of Munc13-1 from its effects on VGCCs (Figure 7D,E, Table 1). Synaptic vesicle exocytosis was smaller for Munc13-KR/AA rescue than wild-type cells as one would predict from the reduced Ca2+ influx in Munc13-KR/AA rescues and the steep relationship between Ca2+ influx and vesicle exocytosis (Ariel and Ryan, 2010). In fact, exocytosis in Munc13-KR/AA rescue in response to single AP was similar to that measured in wild-type cells in the presence of 1.2 mM extracellular Ca2+ (not shown). The fact that VGCC failed to reactivate in 1.2 mM extracellular Ca2+ wild-type cells but not in Munc13-KR/AA rescue suggests that the increase in exocytosis during 2 ms ISI paired pulses in Munc13-KR/AA is a direct effect of the lack of Munc13-VGCC interaction and not a secondary effect of reduced exocytosis. We therefore conclude that this interaction site in Munc13’s C2B domain mediates VGCC channel reactivation in nerve terminals.

Discussion

The observation that Munc13 enhances Ca2+ influx and modulates kinetic properties of VGCCs across a range of stimulation conditions has broad implications for understanding how synaptic transmission is controlled. Our data strongly imply that this modulation is mediated by a direct VGCC-Munc13 interaction although we cannot exclude that synprint interaction site on Munc13 C2B influences interactions with other proteins in situ that in turn modulate VGCCs. Nonetheless, we demonstrate that the presence of this critical active-zone protein has potent influence on VGCC function and delineates a new class of mechanisms for sculpting synaptic efficacy. The strong dependence of exocytosis on Ca2+ influx and the control of VGCC function on fast time scales implies that synaptic throughput can be actively controlled by such VGCC-active-zone protein interactions. The fact that many presynaptic
proteins interact with VGCCs (Han et al.; Hans et al., 1999; Kaeser et al., 2011; Liu et al., 2011; Zhong et al., 1999) suggests that other cases of this type of VGCC control may be operational at nerve terminals.

Our experiments also provide a mechanistic explanation for the profound synaptic depression observed for ultra-short ISIs. The analysis of Broadie & Yue strongly implied that for hippocampal neurons action potentials fail to invade nerve terminals when delivered in rapid succession. Using newly developed fast genetically-encoded voltage indicators we confirmed that for a 2 ms ISI this is the case (Figure 4C) but only for the cooler temperatures at which those early experiments were performed. Remarkably at physiological temperatures synaptic depression for 2 ms ISIs persists (Figure 7A), but the root cause is not AP failure (Figure 4C) but a Munc13-mediated failure of VGCC reactivation (Figure 4A).

Given that Munc13 itself is a multi-domain protein, the rules of governing its interaction with VGCCs might be tunable at different synapses depending on the repertoire of other molecular partners and the Munc13 variant. It is interesting to note that the original description of VGCC’s interaction with synaptic proteins (synprint) was that between syntaxin and Ca\(_2\)vs (Rettig et al., 1997; Sheng et al., 1997). Syntaxin is also a primary interacting partner of Munc13 suggesting that that there might be a 3-way partnership between these proteins that sculpts VGCC and Munc13 function. The synprint interaction motif in Munc13-3 is slightly different than that in Munc13-1 (KRRT as opposed to KKRT, Figure 1), potentially reflecting differences in its interaction with VGCCs and its impact on synaptic performance for pairs of AP stimuli on fast time scales. At present a number of presynaptic proteins, including key active-zone proteins such as RIM and ELKS/bruchpilot are known to interact with VGCCs, but the interactions have been shown largely to control VGCC localization and abundance (Kittel et al., 2006). It will be interesting in the future to see what active-zone protein interactions are necessary to allow function of Munc13 on VGCCs. Moreover, RIM1 and synaptotagmin contain synprint interaction motifs similar to Munc13, posing the possibility that VGCC properties could be controlled by these proteins as
The C2B domain in synaptotagmin has also been identified as a Ca\(^{2+}\) independent mode of interaction with phosphoinositide-4,5-bisphosphate (PIP\(_2\)) on the plasma membrane (Bai et al., 2004; Kuo et al., 2009) and potentially facilitates synaptotagmin homo-oligomerization on lipid bilayers (Wang et al.). These observations suggest that Munc13’s C2B domain could perform a similar function and that the interaction between the C2B domain and PIP\(_2\) may be important in mediating the effects of Munc13 on VGCCs or may be an additional level of regulation. This possibility would contribute an additional layer of complexity to the emerging role of PIP\(_2\) in the modulation of VGCC function (Michailidis et al., 2007; Roberts-Crowley et al., 2009). The recent observation that Ca\(^{2+}\) channels may be highly diffusible in the presynaptic membrane (Schneider et al., 2015) provides another potential mechanism by which interactions with active zone proteins such as Munc13 could modulate effective Ca\(^{2+}\) influx. Complex high-frequency spike bursts have been recorded from many brain regions, including hippocampus (Kandel and Spencer, 1961). Our data show that the temporal envelope of transmission associated with such spikes in hippocampal neurons is actively controlled by the interaction of VGCCs and Munc13 rather than determined by the limitations of the transmission machinery. The work we show here illustrates a novel type of modulation conferred by the local active-zone environment on VGCCs and synaptic function and demonstrates its importance for control of synaptic throughput.

Methods

Plasmids and Protein Preparation

The Munc13-KD shRNA vector was made using the pSuper shRNA system (Oligoengine) using a RNAi targeting sequence (CCAGAGCTTT GAGATCATC) common to both Munc13-1 (NM_022861) and Munc13-2 (NM_001042579) based on the design criteria provided in (Reynolds et al., 2004). Munc13-1 cDNA was kindly provided by Nils Brose, and silent mutations at the RNAi targeting sequence (CCAATCCTTTGAGATCATC) were introduced using the Quickchange kit (Strategene) to generate
knockdown resistant Munc13-1. Munc13-KR/AA mutant was generated using the Quickchange kit to introduce the two point mutations shown in Figure 3 into knockdown resistant Munc13-1. The Ca\textsubscript{v}2.2 (NM_001082191) Synprint region (amino acids: 718-963) was cloned into the pT7.7 bacterial expression vector with the addition of a 6-His tag and T7 epitope at the N-terminus and purified by affinity to Ni-Sepharose (GE Life sciences). Munc13-1 C2B domain (amino acids: 675-820) and Munc13-KR/AA C2B domain were expressed as GST fusions on the pGEX-KG plasmid and purified by affinity chromatography on Glutathione-Sepharose (GE Life Sciences). Tetanus toxin light chain cDNA was kindly provided by M. Dong (Harvard).

Sample preparation and Microscopy

Hippocampal CA3–CA1 regions were dissected from 1- to 3-day-old Sprague Dawley rats, dissociated, plated and transfected as previously described (Kim and Ryan, 2010). All imaging experiments were performed as previously described with laser illumination and EM-CCD image collection (Hoppa et al., 2012) and carried out at 37°. Images were acquired with an Andor iXon1+ (model DU-897E-CSO-#BV) camera. Solid-state diode pumped 488 nm, 532 nm, and 640 nm lasers were shuttered using acousto-optic modulation.

Immunofluorescence

To quantitate endogenous, mutant Munc13 isoforms and Cav2.1 in presynaptic boutons, neurons expressing VAMP2-mCherry alone or with a combination of knockdown and Munc13 mutant constructs were fixed with 4% paraformaldehyde, permeabilized with 0.1% Triton X-100, and blocked for 1 hour at 37° with 5% BSA. For Munc13 staining cells were then labeled rabbit anti-Munc13 (Synaptic Systems) at a 1:500 dilution in blocking solution overnight at 4°, followed by treatment for 1 hour at 37° with Alexa-488 conjugated goat anti-rabbit secondary antibody (Invitrogen) at 1:1000 dilution in blocking solution. Expression levels were determined by quantifying the Alexa-488 fluorescence over a 2 µM region of
interest over presynaptic boutons in transfected neurons as identified by VAMP2-mCherry labeling. These values were corrected against local background staining and normalized to neighboring untransfected boutons to correct for variations in global staining intensity. Cav2.1 staining was carried out as described (Hoppa et al. 2012).

Live cell imaging

During imaging, cells were maintained at 37° and continuously perfused at 200 µL/min with basal buffered saline (119 mM NaCl, 2.5 mM KCl, 2 mM CaCl2, 25 mM HEPES, 30 mM glucose, 10 µM, at pH 7.4) containing 10 µM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 50 µM D,L-2-amino-5-phosphonovaleric acid (AP5) (all from Sigma) to suppress postsynaptic responses. Cells were depolarized with field potentials of approximately 10V/cm for 1 ms via platinum-iridium electrodes. Exocytosis experiments were performed by repeated (once per minute) stimulation of vGpH expressing cells with either single or double pulses at 100 Hz imaging rates and the averaging of >10 runs for each condition and resampled at 20 Hz post-acquisition. Values were then normalized to the fluorescence from exposure to NH4Cl as previously described (Hoppa et al., 2012). Ca2+ measurements were performed by loading cells with 1 µg fluo5F-AM (Invitrogen) at 30° for 10 min followed by a 10 min wash and approximately 5 min equilibration at 37°. Reactivation experiments were performed by imaging neurons at 100 Hz and stimulating with a single pulse, followed by a double pulse 1 second later as shown in Figure 1. All values for single APs and reactivation experiments fall within the linear response range of the probe and are normalized as the change in fluorescence to the pre-stimulation baseline fluorescence (ΔF/F0). Deviation from linearity for single AP and 2 ms ISI experiments was insignificant. Reactivation experiments were performed by stimulating a neuron with 50 APs at 100 Hz followed by stimulation with a single AP 500 ms after the end of the train. 500 Hz trains and reactivation experiments were
linearized using the fluorescence following ionomycin as the value for saturated probe. Voltage imaging was performed by imaging boutons expressing Arch-GFP excited at 640 nm at a 2000 Hz imaging rate with OptoMask occlusion and isolated crop mode for a total of 390 single or double pulses at 8 stimuli/sec. All 390 runs were then averaged into a single image stack, and the response for each bouton averaged together, corrected for the 500 µs relaxation time constant of ARCH in OriginLab, and reported as $\Delta F/F_0$. ARCH amplitudes for single AP were simply taken as the peak value of the $\Delta F/F_0$ in which the baseline fluorescence was corrected for background (Hoppa et al. 2014). We previously showed that single bouton ARCH fluorescence waveforms contain a small direct field stimulus-driven change in membrane potential which is summed linearly with the signal (Hoppa et al., 2014). Measurements of stimulation in the presence of TTX were thus subtracted from the signal obtained in the absence of TTX as described (Hoppa et al., 2014). In order to obtain a robust estimate of the ratio of the 2nd to 1st AP at 30° it is necessary to correct for the residual signal present from the 1st AP at the 2 ms time point. We subtracted off the residual ARCH amplitude at the 2 ms time point from the trials in which a single stimulus was given from the ARCH amplitude at 2 ms when 2 AP stimuli were delivered. At 37° this correction was not performed since the AP is narrower and the contamination is negligible. We estimated the FWHM of the 2nd AP by spline fitting the falling phase of this AP and interpolating the 50% crossing point. This value was doubled to obtain the FWHM.

Co-precipitation Experiments

Glutathione-Sepharose 4B beads for co-precipitation experiments were stored in 20% ethanol. Prior to protein loading, 20 µL of beads were washed 3x in HEPES buffered saline (HBS; 50 mM HEPES, pH 7.4, 100 mM NaCl). The beads were then incubated with 30 µg of purified GST or GST-fusion protein in 200uL HBS with 0.1% Triton X-100 for 4 hours at 4°. Beads were washed 5x in HBS and then incubated with 30 µg purified T7-tagged synprint region in 200 µL HBS with 0.1% Triton X-100 with either 1 mM EDTA or 1
mM CaCl2 overnight at 4°. Beads were washed 5x with HBS and the bound proteins solubilized in Tris-SDS (12 mM Tris, 0.4 % SDS, 1% BME, pH 6.8). After SDS-PAGE electrophoresis, protein bands were visualized by western blot with anti-T7 mAb (Novagen) and chemiluminescence.

Statistics

GST-pulldown statistics were performed by multi-factor ANOVA against EDTA/Ca2+, genotype, and EDTA/Ca2+-genotype interaction. Otherwise statistics were performed by 1-tailed t-test with the Holm-Bonferroni correction for multiple comparisons.

Author Contributions: N.C. carried out opto-physiological calcium and exocytosis measurements and biochemical experiments, and analyzed the data. G.G. carried out the opto-physiological measurements of action potential waveforms and MX carried out a portion of the exocytosis measurements. T.A.R. directed the research, N.C., G.G. and T.A.R. prepared the manuscript.

Acknowledgements This work was supported by a grant from the NIH (MH085783) to T.A.R. We would like to thank D. Eliezer and associates for assistance preparing proteins and F. Maxfield and associates for assistance with western blotting. We thank Jeremy Dittman and members of the Ryan lab for comments and Julia Marrs for technical assistance.
Ariel, P., Hoppa, M.B., and Ryan, T.A. (2013). Intrinsic variability in \(P_V \), RRP size, \(\text{Ca}^{2+} \) channel repertoire, and presynaptic potentiation in individual synaptic boutons. Front Synaptic Neurosci 4, 9.

Han, Y., Kaeser, P.S., Sudhof, T.C., and Schneggenburger, R. RIM determines \(\text{Ca}^{2+} \) channel density and vesicle docking at the presynaptic active zone. Neuron 69, 304-316.

Han, Y., Kaeser, P.S., Sudhof, T.C., and Schneggenburger, R. (2011). RIM determines \(\text{Ca}^{2+} \) channel density and vesicle docking at the presynaptic active zone. Neuron 69, 304-316.

<table>
<thead>
<tr>
<th>Table 1: values for Fluo5 and vG-pHluorin paired pulse experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>2 AP Fluo5F (2 ms ISI)</td>
</tr>
<tr>
<td>AP Post 50AP Train</td>
</tr>
<tr>
<td>1 AP vGlu-pHluorin</td>
</tr>
<tr>
<td>2 AP vGlu-pHluorin (2 ms ISI)</td>
</tr>
</tbody>
</table>

Figure Captions

Figure 1: Munc13 C2B domain interacts with Ca2.2 synprint. A) Alignment of C2 domains from RIM1, synaptotagmin-1, Munc13 isoforms 1, 2, and 3, and Munc13-KR/AA showing the synprint binding polybasic sequence (green), Ca2+ interacting residues (pink), and the two mutated residues in Munc13-KR/AA to prevent synprint binding (bold). B) Top. Representative pull-down of T7-tagged Ca2.2 Synprint region by Glutathione-sepharose bound GST or GST-Munc13-1-C2B fusions in the presence of 1 mM EDTA or 1 mM Ca2+. Bottom Quantification of N=4 independent pull-down experiments normalized to average blot intensity. Results are mean ± SEM. p<10^-6 for grouping by genotype, p=n.s. for presence of Ca2+ or genotype-Ca2+ interaction. C) Cartoon illustrating the relative position and orientation of the synprint binding site and the residues mutated in Munc13-KR/AA with respect to the plasma membrane and Ca2+ binding site. PDB structure 3KWU.
Figure 2: Munc13-KD reduces Ca\(^{2+}\) influx at the presynaptic terminal. A) Average single AP vG-pHluorin response in wild-type (black, N=) and Munc13 KD (red, N=5) neurons. B) Example traces of Ca\(^{2+}\) influx detected by Fluo5F fluorescence in response to a single AP in wild-type (black) and Munc13-KD (red) neurons. C) Averages of peak Fluo5F Ca\(^{2+}\) measurements ± SEM. N= 10, 13 respectively. ** p < 0.01. D) Averages of peak ARCH voltage measurements normalized to WT. N= 5, 7 respectively. Results are mean ± SEM. p = n.s. E) Averages of FWHM from ARCH AP measurements for WT and Munc13 KD normalized to WT. Results are mean ± SEM. N=5, 7 respectively. p = n.s. F) Example image of VAMP2-mCherry + Munc13-KD synaptic terminals (red) labeled with Alexa488 anti-Ca\(_V\)2.1 (green). Scale bar 5 µM. G) Frequency histogram of Cav2.1 staining intensities at VAMP-mCherry positive Munc13 KD boutons (red) compared to Cav2.1 puncta in in non-transfected neurons in the same field of view (N=56 and 46 boutons for KD and WT respectively from 3 separate coverslips) showed that ablation of Munc13 does not alter the abundance of Cav2.1 (p=0.39, 2 tailed t-test).

Figure 3: Munc13-KD prolongs VGCC inactivation on long time scales. A) Example of Ca\(^{2+}\) reactivation assay for wild-type and Munc13-KD neurons showing the difference in single AP responses before and after a 100 Hz 50 AP train showing that wild-type but not Munc13-KD cells have fully recovered from inactivation 500 ms after the end of the train. Inset shows AP following train on expanded time scale for more clarity. B) Average inactivation of Ca\(^{2+}\) influx for wild-type and Munc13-KD neurons from the reactivation assay shown in A. Results are mean ± SEM. ** p < 0.01.

Figure 4: Munc13-KD increases VGCC reactivation on a very short time scale. A,B,E,F) Example traces of Ca\(^{2+}\) responses to one AP (black) and two APs separated by 2 ms for wild-type boutons (A), TeNT-LC expressing boutons (B), Munc13-KD boutons (E), and wild-type soma (F). C) Average membrane AP waveform measured using ARCH at wild-type boutons for single and double AP (2 ms ISI) at 30° (left) and 37° (right) indicating AP failure for the 2\(^{nd}\) AP at the lower temperature but successful firing and
propagation of both APs at physiological temperature. Arch recordings from Munc13 KD boutons also
show successful firing of the 2nd AP. D) ARCH amplitude ratios of 2nd AP peak with respect to first AP
peak for wild-type at 30°C (left), wild-type at 37°C (middle) and Munc13-KD at 37°C (right). Open symbols
show the mean± SEM value for (N=4, WT 30°C; N= 7, WT 37°C, N=7 Munc13 KD 37°C). F) Average Ca²⁺
signal peak height in 2 ms paired pulses ISI normalized to the respective Ca²⁺ signal peak in response to
1AP. G) Average Ca²⁺ signal peak calculated for the second AP during paired pulses of various ISI for wild-
type (black) and Munc13-KD (red) cells normalized to Ca²⁺ signal peak in response to 1AP. Results are
mean ± SEM. * p<0.05, ** p<0.01, *** p<0.001, all other comparisons n.s.

Figure 5: Millisecond refractory period controlled by Munc13 is insensitive to extracellular Ca²⁺. A)
Example traces of wild-type neurons stimulated with 1 AP and 2 AP with a 2ms ISI at 2.0, 1.2 and 0.6 mM
extracellular Ca²⁺. Values are normalized to 1 AP for the three extracellular Ca²⁺conditions. B) Relative
Ca²⁺ influx in response to 1 AP upon reduced extracellular Ca²⁺ as a fraction of influx in 2 mM Ca²⁺. N = 5
each. * p < 0.05, ** p < 0.01. Results are mean ± SEM. C) 2 ms ISI Ca²⁺ influx normalized to 1 AP for the
three extracellular Ca²⁺conditions. No significant difference between conditions of the same genotype. N
= 5 each. * p < 0.05, ** p < 0.01. Results are mean ± SEM.

Figure 6: Munc13-1 but not Munc13-KR/AA rescues the Ca²⁺ influx phenotypes associated with
Munc13-KD. A) Example traces of Ca²⁺ influx detected by Fluo5F fluorescence in response to a single AP
in Munc13-1 (black) and Munc13-KR/AA (red) expressing neurons in a Munc13-KD background. B-C)
Example traces of one AP (black) and two APs separated by 2 ms for Munc13-1 (B) and Munc13-KR/AA
(C) expressing boutons in a Munc13-KD background. D-F) Average values for Ca²⁺ influx (D), reactivation
at 2 ms ISI (E), and residual inactivation (F), in Munc13-KD + Munc13-1 and Munc13-KD + Munc 13-
KR/AA cells, as in figures 3 and 4. Results are mean ± SEM. * p<0.05, ** p<0.01, *** p<0.001, all other
comparisons n.s.
Figure 7: Munc13-KR/AA rescues synaptic vesicle exocytosis and reveals the effect of fast reactivation on exocytosis. A-C) Average traces synaptic vesicle exocytosis detected by vGlut1-pHluorin in response to single APs (black) and two APs separated by 2 ms (red) for wild-type in 2 mM external Ca^{2+} (A), 1.2 mM external Ca^{2+} (B), Munc13-KD + Munc13-1 (C), and Munc13-KD + Munc13-KR/AA. Dashed line shows the response amplitude of the single AP for comparison (D). Increased exocytosis with two APs in Munc13-KD + Munc13-KR/AA cells indicates that the trends in Ca^{2+} influx have a demonstrable effect on exocytosis, and that the Munc13 interaction with VGCC affects neural processing on this time scale. Exocytosis for a single AP is depressed in Munc13-KD + Munc13-KR/AA terminal by 38% compared to wild-type rescue, consistent with reduced Ca^{2+} influx in these cells. E) Average values for fast reactivation at 2 ms ISI for the cell types in A-C. Results are mean ± SEM. ** p< 0.01, *** p<0.001, all other comparisons n.s.
RIM-1 GSKSTPAPYVKVYLENGACIAKKKIARAKTDLPYQQ
synaptotagmin-1 DYGGLSDFYVKHILMQNGKRLAKITIKNTLNPYYNE
Munc13-1 KTGSSDPYTVQV---GK--TERRKTIIYGNLNPVWEE
Munc13-2 KTGSSDPYTVQV---GK--TERRKTIIYGNLNPVWEE
Munc13-3 KTGSSDPYTVQV---GK--KERRKTIIYFNLPWDE
Munc13-1-KR/AA KTGSSDPYTVQV---GK---TERRKTIIYGNLNPVWEE

A

B

EDTA

Ca²⁺

GST
GST/M13 C2B
GST/M13 C2B-KR/AA
GST
GST
GST/M13 C2B
GST/M13 C2B-KR/AA

10% T7-Synp

Plasma membrane

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

A Wild-Type
2.0 mM Ca\(^{2+}\) 1.2 mM Ca\(^{2+}\) 0.6 mM Ca\(^{2+}\)

1 AP 2 AP

500 ms

50% 1 AP

B Wild-Type

Munc13-KD

Fraction of 1AP at 2 mM Ca\(^{2+}\)

2 AP / 1 AP

C

0.0 0.5 1.0 1.5 2.0 2.5

2 mM 1.2 mM 0.6 mM
Figure 7

Wild-Type Munc13-KD + Munc13-1

Munc13-KD + Munc13-KR/AA

vGlut-pH AP2 / AP1

Paired Pulse Ratio

0.0 0.2 0.4 0.6 0.8 1.0

Wild-Type 1.2 mM Ca\(^{2+}\)

Munc13-KD + Munc13-1

Munc13-KD + Munc13-KR/AA

Values represent mean ± SEM.